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Abstract: An alternative method for computing chemical hardness, based on the Janak’s extension of density-
functional theory for fractional occupancies, is employed in the study of the maximum hardness principle for
HCN, HSiN, N2H2, HCP, and O3H+ isomerizations. The hardness is found to be a good indicator of the more
stable isomer in all cases. The hardnesses and the energy profiles, as a function of the reaction coordinate, are
generally opposite in nature only for the isomerization reactions of O3H+ and HSiN, for which there is a
negligible variation of the chemical potential. The electronic and nuclear-repulsion energy changes show
good correlation with the relative stability of a species even when the constraint of constant chemical potential
is not obeyed.

Introduction

The Pearson hard-soft-acid-base1 principle and the Sand-
erson electronegativity equalization2 principle have offered the
possibility to predict site reactivities and possible reaction
mechanisms. By using these principles and the concepts
associated with them, such as hardness (η), softness (S), and
electronegativity (ø), a great deal of experimental information
has been theoretically interpreted. While the concepts of
hardness and softness have proved useful in many ways, it was
only when to them was given a rigorous foundation in the
framework of density-functional theory (DFT)3 by Parr and co-
workers4 that it became possible to assign numerical values to
these properties.

More recently, Pearson proposed another tool to gain further
insight into chemical behavior, namely, the maximum hardness
principle (MHP): “It seems to be a rule of nature that molecules
arrange themselves so as to be as hard as possible”.5 A formal
proof of MHP was provided under the constraint of constant
temperature and chemical potential (µ) by Parr and Chattaraj.6

Subsequently, Parr and Gazquez7 have pointed out that hardness
is at an extremum at any point where both electronic energy
(Eel) and nuclear-repulsion energy (Vnn) reach respective extreme
values, under the condition of a constant product of the number
of electrons and the chemical potential. The MHP has been
further examined within the Gyftopolous-Hatsopolous three-
level model by Chattaraj et al.8 It has been shown that as a

molecule approaches equilibrium, at some fixed chemical
potential and temperature, its hardness most often approaches
a maximum value.

The MHP has been numerically studied by a number of
investigators. Most of the ab initio SCF (self consistent field)
calculations of the hardness profile have been concerned with
molecular deformations and internal rotations.9-13 The results
show that the MHP is obeyed whenµ remains essentially
constant along a reaction path. In a very recent ab initio SCF
study, Kar and Scheiner14 have examined the potential-energy
hypersurface (PES), hardness, chemical potential, and electronic
and nuclear-repulsion energies for various isomerization reac-
tions. They found that generally the most stable isomer is
associated with the highestη value even thoughµ varies but
that the hardness does not pass through a minimum near or at
the transition state (TS). DFT also has been used to study
numerically the validity of MHP for exchange, deformation,
and isomerization reactions.15,16 All these computations indicate
that the MHP is potentially a powerful tool for studying
molecular electronic structure and better understanding various
reaction mechanisms.

Although the results that support the MHP have been
accumulating, less attention has been given to the approximation
used for hardness computations. The ab initio SCF and DFT
computations ofη have been, in general, performed using the
simple orbital theory that allows one to compute the hardness
as the energy difference between the highest occupied orbital
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and the lowest unoccupied orbital:5

With this formula it is difficult to study the MHP for species
with a HOMO-LUMO gap close to zero. Furthermore, the
Kohn-Sham17 (KS) orbitals are different from the canonical
molecular orbitals, and DFT calculation ofη in terms of the
HOMO-LUMO gap is not straightforward. On the other hand,
DFT must be considered as a most desirable bridge between
the study of chemical reactions through the wave function theory
and the concepts of chemical hardness, softness, and frontier
orbital theory. This motivates use of a definition ofη within
DFT itself in further studies of the MHP.

Recently, Liu18 has proposed a rigorous DFT procedure for
the molecular orbital hardness determination and applied it to
the computation of the HCN hardness matrix. Unfortunately,
this procedure is time-consuming.

In the present study, a method for hardness computation,
proposed previously19 in the framework of XR approximation,20

is employed into the Kohn-Sham formalism using Janak’s21

theorem for fractional occupancies. With the aim of checking
MHP’s validity, we have chosen some isomerization reactions,
for one of which the constraint of constant chemical potential
is obeyed (O3H+) and for the other of which the chemical
potential varies (HCN, HSiN, N2H2, HCP) along the reaction
path.

Method

Incorporation of the concepts of hardness and softness into DFT
has led to the mathematical identification ofη as the second derivative
of the total energy with respect to the number of electronsN:22,23

or, equivalently

Where the chemical potential,µ, is the first derivative of the total energy
relative to the electron number. Derivatives are taken at constant
external potentialυ(r ). Softness is defined as the inverse of hard-
ness:

While the chemical potential is constant everywhere within the
molecule, the hardness, and then the softness, is a function of the
position. Thus, in addition to the global definition ofη and S, the

local hardness24 and local softness25 have been introduced as follows:

whereF[F] is the Hohenberg and Kohn universal functional26 andF(r )
is the electron density. These expressions are obtained through the
integration of the hardness and softness kernels:

whereu(r ) is the modified potential,3

The local hardness and local softness are reciprocals in the sense that

Other definitions of local hardness have been proposed, but they will
not concern us here.

To compute local variables for a particular site in a molecule, an
approach based on the fractional occupation number concept can be
employed. The original idea to exploit fractional occupation numbers
in the framework of DFT is from Janak who generalized the earlier
work of Slater, using the XR approach. The validity of the Janak
theorem in DFT forN- andυ-representable densities has been discussed
by many authors.27-34 Recently Kohn et al.35 have pointed out that
fractional occupancies can be always defined for subsystems of
molecules such as atoms or functional groups.

In Janak’s formulation of DFT, the KS one-electron orbital energies
are defined as the first derivatives of the total energy with respect to
the occupation numbersni:

and can be interpreted as the orbital electronegativities.36 This formula
is obtained through the relation between the total electron density and
the Kohn-Sham orbitalsΨi:

Now it is convenient to expand the total energy functional in a
Taylor’s series around the number of electronsN or, in analogy with
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the Slater’s XR, around the state, characterized by the corresponding
set of occupation numbersn0 (n1

0, n2
0, ..., nk

0) and by the corresponding
KS eigenvaluesε0 ) (ε1

0 ..., εk
0).

where ∆ni ) ni - ni
0. The first derivatives with respect to the

occupation numbers give the KS eigenvalues (eq 11) and the second
derivatives

give the hardness tensor as defined by Liu and Parr.36 For a nonsingular
matrix (ηij), the Mors lemma37 states that accounting for the higher
order terms of the Taylor’s expansion does not change qualitatively
the properties of the expanded function. Thus we truncate the energy
function (eq 13) series at the second-order term.

By taking the derivative of eq 7 with respect to occupation numbers,
at constantυ(r ), we found that the hardness tensor elements are given
by

As previously demonstrated,38 the kinetic hardness term vanishes and
the hardness depends only on the second derivative of the Coulomb
(J[F]) and exchange-correlation (Exc[F]) energies. Hence,ηij can be
represented as follows:

The Janak theorem (eq 11) and the hardness tensor definition (eq
14) allow one to calculateηij as the first derivative of the Kohn-Sham
orbital eigenvalues with respect to the orbital occupation numbers:19

Numerically, the latter derivatives can be computed using the finite
difference approximation

This expression takes into account the response of theith orbital to the
change of the occupation number of thejth orbital.

Since the local hardness and local softness are reciprocal to each
other (eq 10), the softness matrix is the inverse of the hardness one:

Equation 19 holds for a nonsingularηij matrix.

The relation between the global and local hardness is given through
the equation

where

is the Fukui function, as previously defined.3,39 The total softness is
obtained as an integral of the local softness:3

Consequently, the total softness is an additive function ofs(r), andS
can be approximated to

Now the total hardness becomes

Also the chemical potential can be computed from the orbital softness
values through the use of the orbital Fukui index18,19,39

with ∑ifi ) 1. From the energy functional expansion (eq 13) and the
latter equation it follows that the chemical potential can be expressed
as18,19

In the simple orbital-theory approach (see eq 1) the chemical potential
is given by

assuming a value of 0.5 for Fukui functions of HOMO and LUMO
orbitals.

Equations 17-19 and 23-27 provide a simple but accurate scheme
that allows one to take into account the influence of all valence orbitals
in the total hardness and chemical potential computations.

Computational Details

We have used the method described above to study the
hardness profile of different isomerization reactions: 1,2-
hydrogen shift for HCN, HSiN, and HCP and cisf trans
interconversion of N2H2 and O3H+.

The results presented here have been obtained using a
modified version of deMon code.40 All calculations were
performed by employing the gradient-corrected functional of
Perdew41 for correlation and that of Perdew and Wang42 for
exchange energy.
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To locate the extreme points on the potential-energy hyper-
surface, the Broyden-Fletcher-Goldfarb-Shanno minimization
algorithm43 for the minima has been used. For the saddle-points
search the Abashkin and Russo44 algorithm has been employed.
Along the reaction path, critical points have been classified as
minima or transition states on the basis of vibrational analysis.
The points along the reaction paths have been obtained by fixing
the appropriate reaction coordinate and optimizing all the other
geometrical parameters. The orbital and auxiliary basis sets
used are of triple-ú quality.45

The calculations of the hardness matrix elements and,
consequently, of the absolute hardness values have been carried
out by taking into account only the occupied valence orbitals
and LUMO. In accordance with the Slater transition-state
method,20 the variations of the occupation numbers∆ni were
set to be 0.5 for the molecules and 0.25 for the ion.

Results and Discussion

In Table 1 we report the calculated hardness (η) values
together with the chemical potential (µ) and the total (E),
electronic (Eel), and nuclear (Vnn) energies of the minima and
the maxima of the reactions studied. All results show that the
respective most stable isomers have greater hardness values than
do the transition states (TS). For comparison, we include also
the hardness values obtained from the HOMO-LUMO energy
difference (ηHL). These do not correctly predict the relative
stability of the isomers for N2H2 and O3H+. Moreover, results
for O3H+ show that this approximation gives zero hardness at
the TS.

As already mentioned, the MHP can be rigorously applied
only under the condition of constant chemical potential. The
computed chemical potential along the reaction path is found
to remain practically constant only for the isomerization reaction
of O3H+ (µ varies from-20.36 to-19.83 eV). All the other
reported chemical potential values (Table 1) account for a
variation of µ along the reaction path. Althoughµ is not
constant, theη values in Table 1 show that hardness is a
reasonable measure of relative stability.

To check the hardness behavior along the whole reaction path,
the variation ofη as a function of the reaction coordinate for
the above reactions has been examined. The energy and
hardness profiles for the interconversion between trans and cis
forms of O3H+ are drawn in Figure 1 as a function of the

dihedral angle O-O-O-H (R). The trans isomer is more stable
than the cis one by about 4 kcal/mol, and the transition state
occurs atR ) 90° and lies about 21 kcal/mol above the global
minimum. For this energy path,η decreases on going from its
maximum value of 6.54 eV, for the trans form, to 5.81 eV for
the transition state. Then, it increases and reaches the value of
6.45 eV, which characterizes the cis isomer. As previously
mentioned, theηHL value does not account correctly for the
relative isomer stability, although its behavior is similar in shape
to that ofη (see Figure 1).

A different behavior has been found for 1,2-hydrogen shifts
in HCN and HSiN. We focused our attention on these
isomerization reactions because the potential-energy surface of
HCN contains two minima separated by an energy difference
of 16.0 kcal/mol, while for HSiN the energy gap is 66.5 kcal/
mol. Moreover, while the HSiNf HNSi interconversion is
accompanied by a variation in the chemical potential of 2.52
eV, for HCN the variation in the numerical values ofµ goes
from -3.87 to-12.30 eV. The dependence of the total energy
and the hardness upon the HCN-angle (θ) is illustrated in Figure
2a. Starting from the HNC minimum (θ ) 0°), η (6.42 eV)
drops until reaching a minimum (6.28 eV) atθ ) 35°, whereas
the energy maximum corresponds to aθ value of 68.4°. Going
to the most stable isomer, HCN (θ ) 180°), η climbs to a
maximum value of 6.96 eV.

In Figure 3a is drawn the hardness profile for the HSiN
isomerization together with the potential-energy surface. The
most stable isomer, HNSi (θ ) 0°), is found to be the hardest
(η ) 4.59 eV). Going to the TS (θ ) 90°), η decreases to 4.41
eV and reaches the minimum of 4.40 eV atθ ) 120°, but this

(43) . Broyden, C. C.J. Inst. Math. Its Appl. 1970, 6, 76. Fletcher, R.
Comput. J. 1970, 13, 317. Goldfarb, D.Math. Comput. 1970, 24, 1385.
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Chem.1992, 70, 560.

Table 1. Calculated Hardnesses from Valence-Shell Electrons (η) and from the HOMO-LUMO Energy Difference (ηHL), Total Energy (E),
Electronic Energy (Eel), and Nuclear Energy (Vnn) in EV for Minima and Maxima of Different Isomerization Reactions

system E Eel Vnn η ηHL µ

t-N2H2 -2549.686 558 -3281.494 067 732.613 089 6.36 1.27 -13.5
c-N2H2 -2549.512 602 -3280.259 580 730.765 386 6.28 1.33 -10.0
TS -2547.904 203 -3279.893 491 731.989 058 5.94 1.26 -16.5
HCN -2152.911 322 -2697.972 892 545.061 570 6.96 3.92 -3.9
HNC -2152.325 487 -2703.406 013 551.080 526 6.42 3.31 -6.3
TS -2151.159 800 -2700.465 759 549.305 995 6.35 2.65 -12.3
HSiN -7937.095 631 -8825.035 885 887.940 253 4.48 1.72 -2.4
HNSi -7939.537 683 -8843.429 618 903.891 936 4.59 2.30 -4.8
TS -7936.664 194 -8816.503 086 879.838 892 4.41 0.76 -4.9
t-O3H+ -5200.032 891 -6884.742 485 1684.709 594 6.54 0.88 -20.0
c-O3H+ -5199.897 362 -6888.208 252 1688.310 890 6.45 0.93 -20.4
TS -5199.229 612 -6877.222 357 1677.992 745 5.81 0.00 -19.8
HCP -8748.581 938 -9588.267 230 839.685 292 4.01 2.28 -4.9
HPC -8745.797 268 -9573.463 056 827.665 788 3.89 1.99 -28.8

Figure 1. Hardness, computed from the valence-shell orbitals (η) and
from the HOMO-LUMO energy difference (ηHL), and total energy
difference (∆E) profiles of O3H+ as a function of theR-dihedral angle.
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discrepancy can be due to numerical errors. Indeed, these
hardness values differ only by 0.01 eV. In Figures 2a and 3a
are also sketched the calculated hardness values as HOMO-
LUMO energy differences along the reaction coordinate. While
in the case of HSiN,ηHL passes through a minimum at the TS,
and theηHL profile of HCN is maximized at the energy minima
and goes through two minima separated by a maximum (θ )
55°) that does not correspond to a stationary point at all. Almost
the same behavior for HCN isomerization was found by Kar
and Scheiner.14

To check the Parr and Gazquez statement,6 the electronic and
nuclear energies as a function of the reaction coordinate are
illustrated in Figure 2b for HCN and in Figure 3b for HSiN
isomerizations. In the case of HCN there is not a coincidence
in the extrema ofη either with Eel or with Vnn profiles. The
electronic energy for HSiN isomerization is found to have the
same profile as the total energy and is a nearly perfect mirror
of the nuclear energy.

Another reaction that does not obey the constraint of constant
chemical potential is the cis-trans isomerization of hydrazine.
The hardness and total energy profiles are given in Figure 4a
as a function of the in-plane valence angle NNH (θ). In this
case the valence angle varies from 112.7° (cis-N2H2) to 253.3°
(trans-N2H2), passing through a value of 177.6° for the TS
structure. Notwithstanding thatη attains a minimum at the TS,

the hardest species (η ) 6.52 eV) corresponds to the valence
angle of 230°, but this point is not a minimum of the potential-
energy hypersurface. Also, in this case a possible relationship
betweenη and the electronic and nuclear energy profiles has
been examined (see Figure 4b). It is apparent that the electronic
energy has extrema at the same points that the nuclear energy
does. Moreover, for this reaction, the extrema inη coincide
with those in the electronic energy. The profile ofηHL (Figure
4a) goes through two minima atθ ) 145° and 200°. Neither
the electronic nor the total energy passes through an extremum
at these points.

Finally, the HCPf HPC isomerization reaction has been
studied. It is interesting to note that, until now, the phosphorus
analogue of the hydrogen isocyanide, isophosphaethyne, has
eluded experimental detection.

The potential-energy surface for this reaction has not yet been
well established. However, Ma et al.46 have carried out very
extensive calculations concluding that all of the employed levels
of theory give HCP as a minimum. The isophosphaethyne,
HPC, is found to be a potential energy minimum using the
Moller-Plesset procedures (RMP2, RMP4, UMP2, UMP3, and
UMP4) but becomes a second-order saddle point when the more
reliable quadratic configuration interaction and Brueckner
doubles computations are employed. In agreement with the

(46) Ma, N. L.; Wong, S. S.; Paddon-Row, M. N.; Li, W. K.Chem.
Phys. Lett.1993, 213, 189.

Figure 2. (a) Hardness, computed from the valence-shell orbitals (η)
and from the HOMO-LUMO energy difference (ηHL), and total energy
difference (∆E) profiles of HCN as a function of theθ-valence angle.
(b) Electronic energy (∆Eel) and nuclear-repulsion energy (∆Vnn)
differences of HCN as a function of theθ-valence angle.

Figure 3. (a) Hardness, computed from the valence-shell orbitals (η)
and from the HOMO-LUMO energy difference (ηHL), and total energy
difference (∆E) profiles of HSiN as a function of theθ-valence angle.
(b) Electronic energy (Eel) and nuclear-repulsion energy (Vnn) differences
of HSiN as a function of theθ-valence angle.

Maximum Hardness Principle J. Am. Chem. Soc., Vol. 120, No. 35, 19989057



latter hypothesis and with previous CASSCF47 studies, our
calculations confirm the nature of the maximum of the HPC
isomer (the vibrational analysis gives two negative eigenvalues
of the Hessian matrix). In Figure 5a the energy profile is
reported together with that of the hardness as a function of the
HCP angle (θ). While the energy curve clearly shows that HPC
is a maximum, it is difficult to explain the presence of three
maxima in theη and ηHL profiles. A similar shape of the
hardness profile (ηHL) has been previously found at the ab initio
6-31G** level of computation.13 Since the potentialµ varies
significantly along the reaction path, no conclusion can be drawn
on the possible existence of a transition state. We only observe
that the maximum hardness value corresponds to the energetic
minimum that is well characterized on the PES. Figure 5b
illustrates theEel andVnn behaviors, which are nearly perfect
mirrors of one another. It is worth noting that the extrema in
η and ηHL coincide with those in the two components of the
total energy.

Conclusion

In this paper we have studied the relationship between
hardness and energy profiles for a series of isomerization
reactions with the aim of ascertaining the validity of MHP by
employing a new procedure for the hardness computation.
Results show that this method gives good correlation between
the energy and hardness profiles and support the statement that
greater hardness implies greater stability. Even though, for all
the studied reactions, the hardness is increasing toward the
maximum value in coincidence with the global minimum on
the PES, the minimum in the hardness profiles does not coincide
with the TS location whenµ is far from constant. Indeed, we
found that the MHP is respected only for O3H+ and HSiN
isomerizations, for which the chemical potential does not vary
significantly during the reactions. In addition, we note that a
good correlation between electronic energies and hardness
profiles exists, except in HCN.

Much work is necessary in order to understand and clarify
the hardness behavior along the reaction path, and we think
that our work could stimulate the study of chemical reactions
in terms of the hardness concept in the framework of density-
functional theory.
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Figure 4. (a) Hardness, computed from the valence-shell orbitals (η)
and from the HOMO-LUMO energy difference (ηHL), and total energy
difference (∆E) profiles of N2H2 as a function of theθ-valence angle.
(b) Electronic energy (Eel) and nuclear-repulsion energy (Vnn) differences
of N2H2 as a function of theθ-valence angle.

Figure 5. (a) Hardness, computed from the valence-shell orbitals (η)
and from the HOMO-LUMO energy difference (ηHL), and total energy
difference (∆E) profiles of HCP as a function of theθ-valence angle.
(b) Electronic energy (Eel) and nuclear-repulsion energy (Vnn) differences
of HCP as a function of theθ-valence angle.
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